# We will reuse these kwargs later on.
kwargs=dict(home_price=1_000_000,# Value of the home
financed_fees=0,# Any fees that are financed (i.e. VA Loan Fee)
years=20,# Compute earnings over X-year period
mortgage_rate=0.06342,# Mortgage rate
downpayment=0.2,# Downpayment amount
pmi=0.005,# PMI expressed as a percentage of the total loan value
length_of_mortgage=30,# 30-year fixed mortgage
home_price_growth_rate=0.08,# Annual appreciation of the home
rent_growth_rate=0.01,# How much rent increases annually
investment_return_rate=0.08,# How much can we make in the market annually?
investment_tax_rate=0.15,# Long term capital gains tax
inflation_rate=0.02,# How much does inflation go up each year?
filing_jointly=True,# Tax filing status
property_tax_rate=0.008,# Annual tax rate on the home
marginal_tax_rate=0.02,# Tax bracket based on income
costs_of_buying_home=0.01,# How much do we pay at closing to buy?
costs_of_selling_home=0.06,# Seller fee
maintenance_rate=0.005,# How much we put away each year for maintenance (roofs, appliances, etc.)
home_owners_insurance_rate=0.004,# Insurance on the home.
monthly_utilities=0,# Utilities for the home (usually a wash with renting utilities)
monthly_common_fees=350,# HOA fees, etc.
monthly_rent=3550,# How much is the current rent?
security_deposit=1,# Proportion of monthly rent paid in the first month
brokers_fee=0.00,# Brokers fee (if applicable)
renters_insurance_rate=0.01,# Rental insurance
)# Create our RentVsBuy calculator.
rent_vs_buy=RentVsBuy().calculate(**kwargs)df=rent_vs_buy.dfdf
annual_per
per_inv
home_value
first_month_home_value
ppmt
ipmt
pmt
maintenance
insurance
property_taxes
...
total_rent_assets
home_opportunity_cost
rental_opportunity_cost
home_opportunity_cost_fv
rental_opportunity_cost_fv
home_opportunity_cost_fv_post_tax
rental_opportunity_cost_fv_post_tax
home_cumulative_opportunity
rental_cumulative_opportunity
buy_vs_rent
0
0
239
1.000000e+06
1.000000e+06
745.705185
4228.000000
4973.705185
416.666667
333.333333
666.666667
...
0.0
209604.871852
0.000000e+00
1.025843e+06
-0.000000e+00
871966.474075
0.000000e+00
8.719665e+05
0.000000e+00
-8.719665e+05
1
0
238
1.006667e+06
1.000000e+06
749.646237
4224.058948
4973.705185
416.666667
333.333333
666.666667
...
0.0
3154.871852
0.000000e+00
1.533824e+04
-0.000000e+00
13037.503844
0.000000e+00
8.850040e+05
0.000000e+00
-8.850040e+05
2
0
237
1.013378e+06
1.000000e+06
753.608117
4220.097068
4973.705185
416.666667
333.333333
666.666667
...
0.0
3154.871852
0.000000e+00
1.523666e+04
-0.000000e+00
12951.162759
0.000000e+00
8.979551e+05
0.000000e+00
-8.979551e+05
3
0
236
1.020134e+06
1.000000e+06
757.590936
4216.114249
4973.705185
416.666667
333.333333
666.666667
...
0.0
3154.871852
0.000000e+00
1.513576e+04
-0.000000e+00
12865.393470
0.000000e+00
9.108205e+05
0.000000e+00
-9.108205e+05
4
0
235
1.026935e+06
1.000000e+06
761.594804
4212.110381
4973.705185
416.666667
333.333333
666.666667
...
0.0
3154.871852
0.000000e+00
1.503552e+04
-0.000000e+00
12780.192188
0.000000e+00
9.236007e+05
0.000000e+00
-9.236007e+05
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
235
19
4
4.765810e+06
4.549220e+06
2573.532960
2400.172225
4973.705185
1895.508239
1516.406591
3032.813182
...
0.0
7596.642466
0.000000e+00
7.801254e+03
-0.000000e+00
7596.642466
0.000000e+00
2.971966e+06
0.000000e+00
-2.971966e+06
236
19
3
4.797582e+06
4.549220e+06
2587.134082
2386.571103
4973.705185
1895.508239
1516.406591
3032.813182
...
0.0
7596.642466
0.000000e+00
7.749590e+03
-0.000000e+00
7596.642466
0.000000e+00
2.979562e+06
0.000000e+00
-2.979562e+06
237
19
2
4.829566e+06
4.549220e+06
2600.807086
2372.898100
4973.705185
1895.508239
1516.406591
3032.813182
...
0.0
7596.642466
0.000000e+00
7.698269e+03
-0.000000e+00
7596.642466
0.000000e+00
2.987159e+06
0.000000e+00
-2.987159e+06
238
19
1
4.861763e+06
4.549220e+06
2614.552351
2359.152834
4973.705185
1895.508239
1516.406591
3032.813182
...
0.0
7596.642466
0.000000e+00
7.647287e+03
-0.000000e+00
7596.642466
0.000000e+00
2.994755e+06
0.000000e+00
-2.994755e+06
239
19
0
4.894175e+06
4.549220e+06
2628.370260
2345.334925
4973.705185
1895.508239
1516.406591
3032.813182
...
3550.0
0.000000
4.148234e+06
-0.000000e+00
4.148234e+06
0.000000
4.148234e+06
2.994755e+06
4.148234e+06
1.153479e+06
240 rows × 35 columns
Calculations
High level overview
First, model the cash flows over the life of the home. These cashflows should incorporate any inflation or appreciation that occurs with time. For this we need:
Value of the home
Liabilities of the home
Assets the home
Liabilities of renting
Assets of renting
Next, we can calculate the opportunity cost of either renting or buying. This is the difference in money (i.e. $8000 monthly house payment - $3000 monthly rent payment) that we can invest for the remaining time of the home, appreciated at market rates.
Below, we show the output of these various calculations for the given scenario.
Home Value
How much will the home be worth when we sell it?
1
2
3
4
5
6
7
8
9
10
render_plotly_html(px.line(pd.DataFrame({"Home Value":df.home_value,"Initial Home Price":df.home_value[0],})))
What money will the home bring in? This includes a tax credit for paying interest on a house (limited to 750K over the lifetime of the loan) and the sale of the house in the last month (shown on the log-scale).
1
render_plotly_html(px.line(pd.DataFrame({"Total Home Assets":df.total_home_assets}),log_y=True,markers=True))
Rent Liabilities
What will renting cost us? Mostly, this is the rent payment. But also includes some other expenses that do not occur when buying a home.
We take the future value of each month’s cash flow (to the last month’s period) and then apply a capital gains tax penalty for selling the asset at the end of the period. Then we compute:
In addition to visualizing the cost curves, we can also use scipy.optimize.minimize_scalar to answer questions. If we only wanted to stay in the house for 5 years, what would be the optimal mortgage rate to breakeven on our investment?
Since numpy-financial is a vectorized library, we can actually see the breakdown for a range of values. For example, we can visualize a 2-d surface of the total opportunity.
random_kwargs=kwargs.copy()random_kwargs.update({"investment_return_rate":simulated_investment_rate,"home_price_growth_rate":simulated_home_growth_rates,})simulated_break_even=RentVsBuy().calculate(**random_kwargs).valuerender_plotly_html(px.histogram(simulated_break_even,title="Simulated Opportunity"))# Print the p05, mean, and p95 of the distribution.
print("p05",np.quantile(simulated_break_even,0.05),"\nMean",simulated_break_even.mean(),"\np95",np.quantile(simulated_break_even,0.95),)
1
2
3
p05 -537973.5755449401
Mean 188798.3910280675
p95 926086.1889873659
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# A little magic to automatically write my blog :)
importsubprocesssubprocess.run(["jupyter","nbconvert","--to","markdown","--output","~/Documents/jakee417.github.io/_includes/markdown/rent_vs_buy_blog_post.md","rent_vs_buy_blog_post.ipynb",])